Asymptotic behavior of growth functions of D0L-systems

نویسندگان

  • Julien Cassaigne
  • Christian Mauduit
  • François Nicolas
چکیده

A D0L-system is a triple (A,σ,w) where A is a finite alphabet, σ is an endomorphism of the free monoid over A, and w is a word over A. The D0L-sequence generated by (A,σ,w) is the sequence of words (w, σ(w), σ(σ(w)), σ(σ(σ(w))), . . . ). The corresponding sequence of lengths, i.e, the function mapping each integer n ≥ 0 to |σn(w)|, is called the growth function of (A,σ,w). In 1978, Salomaa and Soittola deduced the following result from their thorough study of the theory of rational power series: if the D0L-sequence generated by (A,σ,w) is not eventually the empty word then there exist an integer α ≥ 0 and a real number β ≥ 1 such that |σn(w)| behaves like nβ as n tends to infinity. The aim of the present paper is to present a short, direct, elementary proof of this theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Watson-Crick D0L Systems

D0L systems constitute the simplest and most widely studied type of Lindenmayer systems. They have the remarkable property of generating their language as a (word) sequence and, consequently, are very suitable for modeling growth properties. In this paper a new type of D0L systems is introduced, where the parallelism presented in L systems is combined with the paradigm of (Watson-Crick) complem...

متن کامل

About Digital Images and Lindenmayer Systems

In this paper, we are studying deterministic context free Lindenmayer Systems used to describe commands to a device that generates black and white digital images. Instead of well-known methods of drawing, we will paint squares, not lines. In the final part of the paper, we will discuss some important properties of growth functions of D0L-systems. In addition, we turn the discussion to gray scal...

متن کامل

On polynomial growth functions of D0L-systems

The aim of this paper is to prove that every polynomial function that maps the natural integers to the positive integers is the growth function of some D0L-system.

متن کامل

Watson-Crick D0L systems: the power of one transition

We investigate the class of functions computable by uni-transitional Watson–Crick D0L systems: only one complementarity transition is possible during each derivation. The class is characterized in terms of a certain min-operation applied to Z-rational functions. We also exhibit functions outside the class, and show that the basic decision problems are equivalent or harder than a celebrated open...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0804.1327  شماره 

صفحات  -

تاریخ انتشار 2008